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t Institute of Nuclear Physics, NCSR 'Demakritos', GR-15310 Aghia Paraskevi, Attiki, 
Greece 
$ Department of Physics, University of Thessaloniki, GR-54006 Thessaloniki, Greece 

Received 7 May 1991 

Abstract. WKB equivalenl potentials (WKB-EP) giving the same spectrum as the q-deformed 
harmonic oscillator with the symmetry SU,(Z) are determined. While i n  the case of q being 
real the WKB-EP goes t o  infinity as one moves away from the origin, in the case of q being 
a phase the WKE-EP goes to a finite limiling value, thus resembling, for example, the 
modified P6schl-Teller Dotential. 

Quantum algebras [ 1-41 have been attracting much attention recently. In particular, 
the realization of the quantum algebra SU,(2) in terms of the q-analogue of the 
quantum harmonic oscillator [5-7] has initiated much work on this topic [S-121. In 
addition, the quantum rotor, also having the symmetry SU,(2), has been found useful 
in the description of rotational spectra of deformed nuclei [13,14], superdeformed 
nuclei [ 151 and diatomic molecules [ 161, while vibrational spectra of diatomic molecules 
can be described in terms of the q-deformed anharmonic oscillator [ 171. 

In the case of the q-analogue of the quantum harmonic oscillator [5-121, the 
creation and annihilation operators a+ and a satisfy the commutation relation 

a a + - q - ' a + a = q N  (1) 

[N, a+] = a+ [ N , a ] = - a .  (2) 

where N is the number operator, satisfying 

The relevant Fock space is defined as 

where the q-factorial is defined as 

[n l !  =[n][n - 1 1 . .  . [ l ]  

and the q-numbers are defined by 

s inh(n)  
sinh(.r) 

[XI=- 

(4) 

0305-4470/91/150795+07$03.50 @ 1991 IOP Publishing Ltd L795 



L796 Letter to the Editor 

or a phase ( q  = eir), in which case the q-numbers are 

sin(rx) 
[XI=- 

sin( T )  ' 
(7) 

It is clear that in both cases [x]+x in the limit q + 1 .  
The Hamiltonian of the q-harmonic oscillator is 

hw 
2 H =- (aa++a+a). (8) 

Its eigenvalues in the Fock space defined above are then 

hw 
2 

E ( n )  =- ([n]+[n + I]). (9) 

The same spectrum is obtained by solving the q-generalization of the Schrodinger 
equation for the classical potential of the harmonic oscillator 1181. A different approach 
is to find the potential which would yield through the ususal Schrodinger equation the 
same WKB energy spectrum (equation (9)) as the q-harmonic oscillator. This can be 
achieved through use of standard inverse spectrum techniques [19,20]. The result 
should make the physical meaning of q-deformation clearer and will give a physical 
analogue compatible with the classical quantum theory. 

Consider a symmetric potential V(x), with an absolute minimum at x = 0 and let 
V(x) be a non-decreasing function for positive values of x, 

V(X) = V(-x) XV'(X)~O min V(x) = Emin. (10) 

It should be kept in mind that Emi. denotes the energy E ( x )  at the position x at which 
the potential V(x) is minimum. (We keep this notation since it is customary in the 
relevant inverse spectrum literature [ 19,201.) 

The first-order W K B  approximation of the Schrodinger equation 

defines the WKB energy spectrum 

where x is the turning point satisfying the relation 

E = V(X) and Emi, = V(0). 

The equation n = n ( E )  defined by (11) is an increasing function of the parameter E 
satisfying the condition 

n(Emi.) +$ = 0 
:C--..A:.:--" , *A ,  ~--..",:> 
11 C"LIUIIIVLID \I", a15 Y a l l U .  

Following Wheeler [20] or Chadan and Sabatier [I91 we can calculate, without 

n = n ( E )  (13) 

ambiguity, the potential V(x) if the spectral function 
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is defined. The conditions imposed to the potential imply that the energy spectrum 
functions E ( n )  and n ( E )  in equation (13) are uniquely defined in the framework of 
the present method. (This does not mean, however, that the solution to the inverse 
spectrum problem to be found here is the only possible one. Additional solutions might 
exist, which could be found through different methods.) The method is summarized 
as follows. The 'inclusion' 

I (  E )  2 (E - V ( X ' ) )  dx' 1: 
is given using the inverse Abel transform 

(E - E ' ) - ' 1 2 ( n ( E ' ) + i )  dE'. 

(14) 

From the inciusion ( i j j  we can define rhe 'excursion' for ihe symmeiric poieniiai V ( x ) :  

ar 
a E  

X ( E )  =- = 2x.  

The function X ( E )  is a known function of the energy if the spectrum (13) is known. 
From equations (12) and (16) we can calculate the function V ( x )  which corresponds 
to the WKB equivalent potential (WKB-EP) t o  the spectrum (13), i.e. to a potential whose 
WKB spectrum coincides with the known spectrum (13). 

From (6), (7) and (9) we find that the q-oscillator has a spectrum given by 

when g is a phase ( q  = ei7), while in the case that q is real ( q  = e') the spectrum is 

(18) 

In what follows, the two cases will be examined separately. 
We first consider the more complicated case in which q is a phase. In  this case the 

spectrum is defined by (17). If q is a root of the unity then T is a rational multiplier 
of 2 ~ .  i.e. 

T = ( k / l ) 2 ~ ,  k and I are natural numbers with 0s k < I 

and the great common divisor of k and I is 1. 

r- IL:. ----.LA "---I.. -: I -:..e.. t...+ho-..on+ _..- ,171 hl.,- ,I:-,---.- . . - I . . _ e  ,,I L I U S  GPSC Lllci c,m,gy GrgGrr"ar"r;a 81°C" V J  L l l c i  " y C C L 1 Y w  \L', 11aLlr "I>CICIC I a I Y C J ,  

such that 

We must point out that, if T is a non-rational multiplier of 2n, then there is a s$t 
of energy eigenvalues densely distributed inside the energy interval defined by (19), 
i.e. the eigenvalues constitute a band and there is no potential satisfying the general 
assumptions (10). The assumption that T should be a rational multiplier of 2n is quite 
common in many papers concerning the quantum group theory [21]. 
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The energy formula (17) could be used for fitting experimental data of vibrational 
states, in a way similar to that pointed out in [17]. In such cases, however, the number 
of levels to be fitted is relatively small, so that the quantum number n acquires only 
the first few lower values (0, 1.2, . . .) and the energy satisfies the inequality 

0 G E. s €ma*. 

(See [13-161 for additional similar examples.) In this case we have that 
- 
fmi. = U 

and 

!! shou!d he reca!!ed here that E,,” is the va!ue of the energy I! the pnsltinn I t  Which 
the potential V ( x )  is minimum, and not the minimum value of the energy of the 
oscillator. 

The inclusion (14) is calculated by 
f i 2  1/2 E 

I ( € )  =-(-j T 2m lo (E ~ i n - ’ ( ~ s i n ( r / 2 ) )  fiw d€’. 

This integral after an integration by parts is transformed into the form 

where 

2 E  s i n ( ~ / 2 )  
fiw 

S =  

and 

The excursion function given by (16) is 

X ( E ) = - = -  J l  2 (  - fi2j”2(2sin(~/2)j”2;.3 - 
JE T 2m fiw 

which gives 

The integral can be reduced in a n  elliptic integral of the first kind 

where 

S =sin-‘( pj S + l  and M = E ,  
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From E = V ( x )  we can invert ( 2 5 )  numerically and calculate the function V =  V(x). 
The form of the potential V ( x )  is shown in figure 1 for various values of the parameter 
7. For T = 0 the ususal harmonic oscillator potential 

muz 
V ( x )  =- x2 

2 

is obtained. For T # 0 it is clear that the potential reaches a finite limiting value as  
x+cu given by equation (19): 

ho 
2 s i n ( ~ / 2 )  

lim V ( x )  = 

We consider next the case in which q is real. In this case the spectrum is defined by 

7 

The inclusion (14) is calculated by 

This integral, after an integration by parts, is transformed into 

where 

2 E  sinh(r/2) 
ho 

S =  

and 

f ' 0 0  V(x) 1 

\ 7 0 4  / _ - - - - - -  
..\\ I I ................ ~ 

_ _ _ _ _ _  
-,\-- I 1' 

- i o  -20 0 20 40 

... . . ................ y/- 
X 

Flpre 1. WKB potentials giving the same spectrum as the q-deformed harmonic oscillator 
with the symmery SU,(Z) for q being a phase (q=exp(iT))  are given for various values 
of 7. (The parameters are bw = I and fi 'f2m = I.) , 
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The excursion function given by (16) is 

7 
(34) 

The function aG/as  is calculated using the generalized hypergeometric function 3F2 

From E = V ( x )  we can invert this equation numerically and calculate the function 
V =  V ( x ) .  The form of the potential V ( x )  is shown in figure 2 for various values of 
the parameter 7. For T = 0 the ususal harmonic oscillator potential is obtained. For 
7 # 0 it is clear that the potential goes to infinity for x + m, as in the case of the ususal 
harmonic oscillator potential. 

0.10 V(x) i\\,;j/=, 1 .~~~~...  i= T= i=10.0 5.0 1.0 

~ 0 0 5  t 

i 
\ 

! , 
$ I 

\ I 

.... ....-- .----.-...~ ......- I ...~.... 
-1.0 -0.5 0 0.5 1 .o 

X 

Figure 1. wKB potentials giving the Same spectrum as the q-deformed harmonic oscillator 
with the symmetry SU,(2) for q real (q=exp(r) )  ace given for various valuer of I. (The 
parameters are the same as in figure I . )  

In summary, we have determined the WKB-EP which gives the same spectrum as 
the q-harmonic oscillator, according to the method of Chadan and Wheeler [19,20]. 
In the case of real q, the potential goes to infinity as x+m, while in the case of q 
being a phase the potential goes to a finite value as x +  m. The latter case corresponds 
to a harmonic oscillator with squeezed spectrum. The potential resulting in the case 
of w being a phase is more similar to the Poschl-Teller potential [22] (which has been 
recently used in hypernuclear physics [23]) and to the Woods-Saxon potential [24] 
(which is widely used in nuclear physics) than to the classical harmonic oscillator 
potential. It is therefore of interest to determine the WKB-EP giving the same spectrum 
as the q-rotor [13-161, which has been found suitable for the description of rotational 
spectra ofdeformed nuclei [13,14], superdeformed nuclei [15] and diatomic molecules 
[16], as well as the WKB-EP giving the same spectrum as the q-anharmonic oscillator 
[17], which has been found appropriate for the description of vibrational spectra of 
diatomic molecules, It is worth mentioning that in all cases [13-171 it is the choice of 
q being a phase which gives the physically interesting result. In the case of the vibrational 
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spectra of diatomic molecules [17] it is of interest to examine the relation between the 
WKB-EP giving the same spectrum as the q-anharmonic oscillator [17] and the widely 
used Morse potential [ 2 5 ] .  Work in these directions is in progress. 

Support from the Greek Ministry of Research and Technology (DB) is gratefully 
acknowledged. 
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